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MATHEMATICAL ANALYSIS OF WHIRLED TURBULENT
FLOW THROUGH A PIPE

V. V. Tret'yakov and V., I, Yagodkin UDC 532.542.4

The effect of rotation of the stream on the development of turbulent flow in a pipe is analyzed by
a numerical method, Calculated distributions of average turbulence velocity and energy are
compared with experimental data.

Study of whirled turbulent flow is very important, Owing to the tremendous complexity of such a flow,
however, it has so far been studied less extensively than similar flow without whirling, This applies espe-
cially to flow through pipes. Here will be presented the results of numerical calculations pertaining to whirled
turbulent flow through a cylindrical pipe, calculations based on the two-parametric k— € and k — W models of
turbulence [1]. Various authors have used these models earlier for calculating the flow in boundary layers, in
free or bounded jets, and through channels of intricate shapes. They compared the theoretical and experimen-
tal data on the basis of average flow characteristics (velocity profiles, size and location of the recirculation
zone, ete.). In [2], e.g., a comparison is shown between calculated and measured profiles of average velocity
along an annular channel, This is partly attributable to the fact that published experimental data on whirled
flow are incomplete in terms of turbulence characteristics. For this reason, we have selected for comparison
the data in {3] containing not only the profiles of the components of average velocity and the pressure distribu-
tions along the pipe wall as well as along the pipe axis, but also data on the distribution of and the correlation
between the intensities of the three components of velocity fluctuations in the stream.

The system of equations describing a steady turbulent motion of an incompressible fluid through a pipe,
under the assumption of a rotationally symmetric flow without external body forces acting and with constant
molecular transfer coefficients, can be written in cylindrical coordinates as

1 0
o =
dup 1 orv? v 2 4 v dv 1 ap
2 T r = 2 r Wz | 9 —
0z + r or oz [(v vl ] r or rvav ] [( o ar ] v+ v,) + p Or

a2 1 v, | 19 do,17 1 dp 1 @ dv, (1)
E_i_ r ‘_(3_;——2—_[("4—\71) -I r Or [r(v—l—vt) ] p Oz + r Oor [r(v—i—vt) ar]'

1.1
LT I MR a’”" J+ 12 [r @ +v) a’”" ]»—i 2 v rogl,
0z r or az r Or r Or

where v,, v;., and vy are time-averaged components of velocity.
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For calculating the coefficient of turbulent viscosity v; we will use the transfer equations pertaining to
the kinetic energy of turbulence per unit volume k = {(v}?)/2 and to the rate of its dissipation & = v{{8v}/ 3Xj)2>
in the k— € model as well as the transfer equations pertaining to quantities k and W in the k— W model, quan-
tity W being proportional to the frequency of turbulent fluctuations squared.

It has been demonstrated in [2] that, despite the experimentally observable anisotropy of the coefficient
of turbulent viscosity [4], this coefficient can be regarded as a scalar quantity in calculations pertaining to the
distribution of the average velocity of whirled flow through an annular channel. Accordingly, the coefficient
vt will be calculated with the aid of the Kolmogorov — Prandtl relations

v, = C Fe, ‘ 2
o
v, =kW ? @)
in the turbulence models k- € and k— W, respectively, as well as the transfer equations for k, &, and W in the
o L Ouk_ 0 (v ) L0 viw O
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form. The first terms on the right_hahd side appear in the gradiental-diffusion approximation and the expres-
sions for the source terms Sy, Sg, and Sy, are

Sk= VtFk'—'S,
S =2(C1,6vFp—Cy - e)/k,
Sh = ’Vch— Cuk V‘_VN, (5)

Sw = Cl oV (grad (Di)z — Cz w WS/Q + CS,w —‘kV— VtFkr

o, \*, (00 Y (fzfze_z (1%2 du, | o, \?
Fh=2[<02)T(a—rj +7]+ ) T\ o +<6r+$)’

with w; denoting the components of the velocity vortex. The values of the empirical constants in these equa~
tions are, according to data in 1, 5], Cy = 0,09 and o = 1.0, 0g = 1.3, Cie= 1.44, CQ,E = 1,92 in the k—¢
model, and oy = ow = 0.9, Cy w = 3.5, Cy w = 0,17, Cs,w = 1.04 in the k = W model,

The system of equations (1)-(5) will be solved by the finite-differences method [6], for which these equa~
tions are transformed by introduction of the flow function ¥ and the tangential vortex component w = Qr

U Lo L(avr;avzj
r

or or " or 0z gz ar

'z s r R 2

por Oor or 0z

{6)

in lieu of the pressure p and the velocity components v, Ve

Inasmuch as equations describing such a flow are of the elliptic kind, the values of variables ¥, £, Vg,
k, and € or W (depending on the model) must be determined at all boundaries of the flow region.

The profiles of each variable at the channel entrance section are stipulated arbitrarily and regarded as
parameters of the problem. The profile of tangential velocity vg will, moreover, be stipulated according to
the law for a solid body, this law approximating the profile experimentally established in [3].

The conditions at the axis of symmetry are stipulated as

P(r=0)=0, {(7)
g (r=0)=0, (8)
%=—ai=aiv-=0 at r=0, (9
dar or ar :
Qp = —8(Wyyp — o) ruwp— (np — Vo) T3V (thnp — Tap) (10)
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where expressions (7)-(9) represent conventional conditions of symmetry and where the boundary condition for
Q has been expressed in finite-difference form on the assumption that in the vicinity of the axis it is possible
to expand functions ¥ and € into Taylor series with respect to the distance from the axis as the parameter,
Subscripts P, NP, and NNP refer to values of this function, respectively, on the axis and in the first and
second radial layers of the finite-difference grid,

The constraints on all functions at the channel exit are stipulated as
8/dz=0 at z=L. ' (11)

Numerical calculations have shown that assuming the approximate boundary condition (11) affects the solution
only in the immediate vicinity of the exit section. The numerical results which will be shown here refer to
the region beyond this zone,

The constraint on the flow function at the solid boundary follows from the condition of zero leakage
P (r = ry) = const, (12)

with the value of the constant determined from the condition of nérmalizing with respect to the mean-discharge
velocity viy. The constraints on all other variables at the solid boundary are determined from the assumption
that the "wall law" applies to a curved surface, this assumption having been validated by experimental data [7].

Accordingly, within layer A nearest to the solid surface one can assume

_ L oypp, [EAVE ) (13)
%8 = Vi Ln(vcosa '
Q, = Vasina ) 14)
ralx
ky=V5CrV2, (15)
g = Vi (A0, (16)
W, = Cy' (V A1), : amn

where
V,=Vilcosa =Vi/sina, tga=uv,/vs.

The values of V; and Vz are found from calculated values of the flow function ¥ and the tangential velocity
component vy, as solutions of the two transcendental equations

 _prVa | [ EVEA ) UezygLn(EAva* )
or % vsina % vCcosa

where ® = 0,41 and E = 9,0,

Experimental data on the distributions of the three components of average velocity in a pipe are pre-
sented in [3] for two values of the whirl parameter ¢ = wyry/viy: ¢ = 0 and ¢ = 3 (w, denoting the average
angular velocity of a'gas at the exit from the whirler). The distributions of intensities of velocity fluctuations
are shown for the same values of the whirl parameter. The experiments were performed with the Reynolds
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Fig. 1, Change of profiles along a pipe: a) profile of the axial
velocity component v,; b) profile of the tangential velocity
component Vg. NRe1,5-104, . Solid lines represent calcula-
tions; dashed lines represent experimental data in [3].
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Fig. 2. Change of the profile of turbulence energy k along a pipe.
NRe = 1.5-10% Solid lines represent calculations; dashed lines
represent experimental data in [3].

Fig, 3, Change of the profile of turbulence energy k along the initial
pipe segment, Npg = 105,

number Nge = vipry /v equal to 1.5+10* and the dynamic velocity V4 = 0,0545vy;. These data were compared
with calculations for the same values of these parameters,

Calculations were made first for an unwhirled flow (o = 0), assuming for the components of average tur-
bulence velocity and energy at the pipe entrance conditions close to those experimentally established in [3].
Assumed was, furthermore, a uniform profile of turbulent viscosity v¢.

The calculations revealed a profile of the axial velocity component developing into one close to the ex-
perimentally established one, but some discrepancies in the profiles of turbulence energy k. These discrep-
ancies could arise due to the actual flow in this case not being fully developed within the initial segment of the
pipe, With the turbulent flow fully developed further downstream (z/r;, = 150), the profiles of vy and k were
found to approach those experimentally established in [8],

The next step was calculating a whirled flow (0 = 3), with the rotation of the stream significantly affecting
the average values of the flow parameters and the turbulence characteristics, Calculations and experimental
data pertaining to vy, vg, and k within the entrance segment in this case are compared in Figs. 1 and 2, The
calculations here are based on the k— W model. The graphs indicate a close agreement between calculated
and measured distributions of both velocity components over the entire pipe length, but somewhat more dis-
crepancy between the respective distributions of turbulence energy, especially within the z/r, = 25-60 zone.
This discrepancy could be due to a loss of stability in a rotational flow by a mechanism generating additional
turbulence energy in the stream but disregarded in both models. The results of calculations according to the
k — € model agree almost exactly with those based on the k— W model. Therefore, they correctly depict the

flow pattern within the initial segment L =< (10-15)r, and both models of turbulence are useful for describing a
whirled turbulent flow such as the one considered here.

For the purpose of determining the effect of whirling on the distributions of kinetic turbulence energy
and of components of the average velocity within the initial pipe segment, calculations were made under the
following assumptions: Reynolds number Npe = VLoV = 10° and 0 = 1, uniform profile of the axial velocity
component, "solid body"-law profile of the tangential velocity component, linear profile of turbulence energy,
uniform profile of turbulent viscosity Vi, and Vgp = 1073, The results of these calculations are shown in
Fig. 3. The graphs here indicate a generation of turbulence near the pipe wall. As the flow develops, the
energy of this turbulence is transmitted from the pipe wall toward the center, which its profile with the peak
shifting toward the pipe axis indicates. At the same time, energy is also dissipated and its profile acquires
the characteristic features of a developed one, At higher values of the whirl parameter, turbulence energy is
generated more intensively and the turbulent viscosity increases at the pipe wall so that the level of kinetic
turbulence energy at the pipe entrance has a relatively lesser influence on the distributions of components of
the average velocity in the stream. It ought to be noted, however, that stipulating k and v profiles far from

"natural™ ones will drastically change the turbulence parameters within the initial pipe segment and thus can
qualitatively distort the flow pattern.
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NOTATION

z, 1, 0, axial, radial, and tangential coordinates; ry, pipe radius, vy, vy, Vg,time-averaged components
of velocity; V'Z, v'r, V'@, corresponding fluctuation components of velocity; v, coefficient of kinematic viscosity;
NRe = VmFo/V, Reynolds number; vy, mean-discharge velocity; L, pipe length, @, angle between the velocity
vector and direction 85 Vei =v + 1; V,, dynamic velocity.
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EFFECT OF MASS FORCES ON PARTICLE MOTION
IN A LAMINAR SUBLAYER OF TURBULENT FLOW
IN RECTILINEAR CHANNELS WITH VARIOUS
SPATIAL ORIENTATIONS

Yu. M., Grishin and A, A. Mosin UDC 532.517

Based on solutions of the equations of motion, features of motion of a liquid particle are analyzed
for a laminar sublayer of turbulent flow in channels with varying spatial orientations.

It is well known [1] that in solving the problem of particle precipitation at channel walls in a turbulent
gas flow, the transverse particle motion is advisably considered separately in the flow bulk and in a narrow
boundary layer with a large velocity gradient — the laminar sublayer. In the bulk fiow the particle motion is
uniquely determined by the action of turbulent flow pulsations on the particles [2] and obeys the laws of turbu-
lent diffusion. In the boundary-layer region the effect of diffusion particle motion is weakened in comparison
with systematic effects (due to fundamental forces). In this case it was shown [3] that particle precipitation at
the channel walls is primarily determined by particle trajectories in the laminar sublayer, Despite the large
number of papers devoted to calculating particle trajectories in the laminar sublayer (see, e.g., [4]), the
problem of the effect of mass forces (weight forces), taking into account their interactions with forces gener-
ated in the fluid itself, on trajectories of particle motion in channels with varying spatial orientations has so
far not been sufficiently investigated.

In this connection we consider the problem of motion of nondeformed particles of spherical shape in a
laminar sublayer of an evolving turbulent flow moving in a rectilinear channel. We assume that the basic
parameters of the boundary layer are independent of the channel orientation in space, do not vary along the
channel (stable flow), and are determined by the well-known semiempirical relations [5]

—_
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